Fgf8 expression defines a morphogenetic center required for olfactory neurogenesis and nasal cavity development in the mouse.

نویسندگان

  • Shimako Kawauchi
  • Jianyong Shou
  • Rosaysela Santos
  • Jean M Hébert
  • Susan K McConnell
  • Ivor Mason
  • Anne L Calof
چکیده

In vertebrate olfactory epithelium (OE), neurogenesis proceeds continuously, suggesting that endogenous signals support survival and proliferation of stem and progenitor cells. We used a genetic approach to test the hypothesis that Fgf8 plays such a role in developing OE. In young embryos, Fgf8 RNA is expressed in the rim of the invaginating nasal pit (NP), in a small domain of cells that overlaps partially with that of putative OE neural stem cells later in gestation. In mutant mice in which the Fgf8 gene is inactivated in anterior neural structures, FGF-mediated signaling is strongly downregulated in both OE proper and underlying mesenchyme by day 10 of gestation. Mutants survive gestation but die at birth, lacking OE, vomeronasal organ (VNO), nasal cavity, forebrain, lower jaw, eyelids and pinnae. Analysis of mutants indicates that although initial NP formation is grossly normal, cells in the Fgf8-expressing domain undergo high levels of apoptosis, resulting in cessation of nasal cavity invagination and loss of virtually all OE neuronal cell types. These findings demonstrate that Fgf8 is crucial for proper development of the OE, nasal cavity and VNO, as well as maintenance of OE neurogenesis during prenatal development. The data suggest a model in which Fgf8 expression defines an anterior morphogenetic center, which is required not only for the sustenance and continued production of primary olfactory (OE and VNO) neural stem and progenitor cells, but also for proper morphogenesis of the entire nasal cavity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Foxg1 promotes olfactory neurogenesis by antagonizing Gdf11.

Foxg1, a winged-helix transcription factor, promotes the development of anterior neural structures; in mice lacking Foxg1, development of the cerebral hemispheres and olfactory epithelium (OE) is severely reduced. It has been suggested that Foxg1 acts by positively regulating the expression of growth factors, such as Fgf8, which support neurogenesis. However, Foxg1 also binds Smad transcription...

متن کامل

The indirect role of fibroblast growth factor-8 in defining neurogenic niches of the olfactory/GnRH systems.

Bone morphogenic protein-4 (BMP4) and fibroblast growth factor-8 (FGF8) are thought to have opposite roles in defining epithelial versus neurogenic fate in the developing olfactory/vomeronasal system. In particular, FGF8 has been implicated in specification of olfactory and gonadotropin releasing hormone-1 (GnRH) neurons, as well as in controlling olfactory stem cell survival. Using different k...

متن کامل

Fibroblast Growth Factor 8 Expression in GT1-7 GnRH-Secreting Neurons Is Androgen-Independent, but Can Be Upregulated by the Inhibition of DNA Methyltransferases

Fibroblast growth factor 8 (FGF8) is a potent morphogen that regulates the embryonic development of hypothalamic neuroendocrine cells. Indeed, using Fgf8 hypomorphic mice, we showed that reduced Fgf8 mRNA expression completely eliminated the presence of gonadotropin-releasing hormone (GnRH) neurons. These findings suggest that FGF8 signaling is required during the embryonic development of mouse...

متن کامل

Sox2 is required for olfactory pit formation and olfactory neurogenesis through BMP restriction and Hes5 upregulation

The transcription factor Sox2 is necessary to maintain pluripotency of embryonic stem cells, and to regulate neural development. Neurogenesis in the vertebrate olfactory epithelium persists from embryonic stages through adulthood. The role Sox2 plays for the development of the olfactory epithelium and neurogenesis within has, however, not been determined. Here, by analysing Sox2 conditional kno...

متن کامل

Effects of Treatment with Bone Morphogenetic Protein 4 and Co-culture on Expression of Piwil2 Gene in Mouse Differentiated Embryonic Stem Cells

Background Specific growth factors and feeder layers seem to have important roles in in vitro embryonic stem cells (ESCs) differentiation. In this study,the effects of bone morphogenetic protein 4 (BMP4) and mouse embryonic fibroblasts (MEFs) co-culture system on germ cell differentiation from mouse ESCs were studied. MaterialsAndMethods Cell suspension was prepared from one-day-old embryoid bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 132 23  شماره 

صفحات  -

تاریخ انتشار 2005